14 research outputs found

    A robotic honeycomb for interaction with a honeybee colony

    Get PDF
    Abstract: Robotic technologies have shown the capability to interact with living organisms and even to form integrated mixed societies comprised of living and artificial agents. Bio-compatible robots, incorporating sensing and actuation capable of generating and responding to relevant stimuli, can be a tool to study collective behaviors previously unattainable with traditional techniques. To investigate collective behaviors of the western honeybee (Apis mellifera), we designed a robotic system capable of observing and modulating the bee cluster using an array of thermal sensors and actuators. We initially integrated the system into a beehive populated with approximately 4,000 bees for several months. The robotic system was able to observe the colony by continuously collecting spatio- temporal thermal profiles of the winter cluster. Furthermore, we found that our robotic device reliably modulated the superorganism’s response to dynamic thermal stimulation, influencing its spatiotemporal re-organization. In addition, after identifying the thermal collapse of a colony, we used the robotic system in a “life-support” mode via its thermal actuators. Ultimately, we demonstrated a robotic device capable of autonomous closed-loop interaction with a cluster comprising thousands of individual bees. Such biohybrid societies open the door to investigation of collective behaviors that necessitate observing and interacting with the animals within a complete social context, as well as for potential applications in augmenting the survivability of these pollinators crucial to our ecosystems and our food supply. This is the author’s version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science Robotics, Vol. 8, 76, Mar 2023, DOI: 10.1126/scirobotics.add7385 https://doi.org/10.1126/scirobotics.add738

    Effects of Sinusoidal Vibrations on the Motion Response of Honeybees

    Get PDF
    Vibratory signals play a major role in the organization of honeybee colonies. Due to the seemingly chaotic nature of the mechano-acoustic landscape within the hive, it is difficult to understand the exact meaning of specific substrate-borne signals. Artificially generated vibrational substrate stimuli not only allow precise frequency and amplitude control for studying the effects of specific stimuli, but could also provide an interface for human-animal interaction for bee-keeping-relevant colony interventions. We present a simple method for analyzing motion activity of honeybees and show that specifically generated vibrational signals can be used to alter honeybee behavior. Certain frequency-amplitude combinations can induce a significant decrease and other signals might trigger an increase in honeybees’ motion activity. Our results demonstrate how different subtle local modulatory signals on the comb can influence individual bees in the local vicinity of the emitter. Our findings could fundamentally impact our general understanding of a major communication pathway in honeybee colonies. This pathway is based on mechanic signal emission and mechanic proprio-reception of honeybees in the bee colony. It is a candidate to be a technologically accessible gateway into the self-regulated system of the colony and thus may offer a novel information transmission interface between humans and honeybees for the next generation of “smart beehives” in future beekeeping

    Statins in Candidemia: clinical outcomes from a matched cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HMG CoA reductase inhibitors (statins) in patients with bacteremic sepsis have shown significant survival benefits in several studies. There is no data on the effect of statins in candidemic patients, however in-vitro models suggest that statins interfere with ergesterol formation in the wall of yeasts.</p> <p>Methods</p> <p>This retrospective matched- cohort study from 1/2003 to 12/2006 evaluated the effects of statins on patients with candidemia within intensive care units. Statin-users had candidemia as a cause of their systemic inflammatory response and were on statins throughout their antifungal therapy, while non-statin users were matched based on age +/- 5 years and co-morbid factors. Primary analysis was 30-day survival or discharge using bivariable comparisons. Multivariable comparisons were completed using conditional logistic regression. All variables with a p-value less than 0.10 in the bivariable comparisons were considered for inclusion in the conditional logistic model.</p> <p>Results</p> <p>There were 15 statin-users and 30 non-statin users that met inclusion criteria, all with similar demographics and co-morbid conditions except the statin group had more coronary artery disease (P < 0.01) and peripheral vascular disease (P = 0.03) and lower median APCAHE II scores (14.6 vs 17, p = 0.03). There were no differences in duration of candidemia, antifungal therapy or <it>Candida </it>species between the groups. Statins were associated with lower mortality on bivariable (OR 0.09, 95% CI 0.11-0.75, p = 0.03) and multivariable (OR 0.22, 95% CI 0.02-2.4, p = 0.21) analyses compared to controls; although, in the latter the protective effect lacked statistical signficance.</p> <p>Conclusion</p> <p>In our small, single-center matched-cohort study, statins may provide a survival benefit in candidemia, however further studies are warranted to validate and further explore this association.</p

    Multispecies Communities

    Get PDF
    Prof. Dr. Jens Schröter, Dr. Pablo Abend und Prof. Dr. Benjamin Beil sind Herausgeber der Reihe. Die Herausgeber*innen der einzelnen Hefte sind renommierte Wissenschaftler*innen aus dem In- und Ausland."Multispecies Communities" sind nicht mehr alleine auf den Menschen fixiert und bringen andere Akteure ins Spiel. Damit ergeben sich neue Formen der Kommunikationen und Kollaborationen, der Verantwortlichkeiten und der RĂŒcksichtnahmen (awareness), der Vergemeinschaftungen und der Teilhaben: Diese finden statt zwischen Menschen und Tieren, Pflanzen und Algorithmen, Artefakten und Biofakten, Maschinen und Medien; zwischen den Sphären von belebt und unbelebt, real und virtuell, unberührt und augmentiert. Der Umgang mit Technik ist lĂ€ngst kein menschliches Privileg mehr, wie die Ausdifferenzierungen von Human-Computer Interaction (HCI) in Animal-Computer Interaction (ACI) oder Plant-Computer Interaction (PCI) verdeutlichen. Diese Ausdifferenzierungen finden ihren Niederschlag ebenso in den verschiedenen Disziplinen der Wissenschaft und in der Kunst sowie in gesellschaftlichen, sozialen, ethischen und politischen Aushandlungen des gemeinsamen Miteinanders. In dieser Ausgabe sind fĂŒr diesen Diskussionszusammenhang relevante programmatische Texte versammelt und erstmals fĂŒr den deutschsprachigen Raum zugĂ€nglich gemacht."Multispecies communities" are no longer focused on humans alone and bring other actors into play. This results in new forms of communication and collaboration, of responsibilities and awareness, of communalisation and participation: These take place between humans and animals, plants and algorithms, artefacts and biofacts, machines and media; between the spheres of animate and inanimate, real and virtual, untouched and augmented. Dealing with technology is no longer a human privilege, as the differentiations from Human-Computer Interaction (HCI) into Animal-Computer Interaction (ACI) or Plant-Computer Interaction (PCI) exemplify. These differentiations are also reflected in the various disciplines of science and art as well as in societal, social, ethical and political negotiations of shared interaction. In this issue, relevant programmatic texts have been collected for this discussion context and made available for the first time for the German-speaking area

    Porous polymer particles—A comprehensive guide to synthesis, characterization, functionalization and applications

    Full text link

    Swarm-intelligence by pattern formation and collective decision making in simple interaction systems

    No full text
    In der vorliegenden Arbeit werden die PhÀnomene Selbstorganisation und Emergenz anhand zweier einfacher Modelle untersucht. Eines dieser Modelle (der BEECLUST Algorithmus) beschreibt einen sehr konkreten Fall der Selbstorganisation bei der westlichen Honigbiene Apis mellifera L., das andere Modell (das Primordial Particle System) beschreibt ein sehr generelles Beispiel der Bildung von emergenten Strukturen mit ausgeprÀgten Eigenschaften aus einzelnen, identen Bausteinen.Es wird gezeigt wie es in diesen FÀllen zu den PhÀnomenen der Selbstorganisation und Emergenz kommt und welche Eigenschaften die jeweiligen Systeme dadurch aufweisen. Im konkreten Modell, wird das mathematische Modell zuerst anhand von Versuchen mit echten Bienen validiert, danach wird es verwendet um gewisse Parameter zu untersuchen, die im realen System nicht untersuchbar wÀren. Dazu wird das System, so weit es möglich ist, reduziert um die essentiellen Systemkomponenten zu bestimmen. Das Modell dient auch dazu, Interaktionen zwischen Honigbienen und robotischen Attrappen zu testen. Der Vergleich von simulierten Versuchen mit Àquivalenten Versuchen an Honigbienen und Robotern wird danach wieder zur qualitativen Verifizierung und Validierung des Modells verwendet. Im generellen Modell werden die emergenten Eigenschaften von Strukturen beschrieben, die sich durch regelbasierte Interaktionen identer Bausteine bilden und dabei Analogien zu Lebewesen aufweisen. Dabei können Parallelen zur Abiogenese gefunden aber auch die grundsÀtzliche Natur von emergenten Systemen untersucht werden.In this work, the phenomena of self-organization and emergence are investigated by two simple models. The BEECLUST algorithm describes a specific case of self-organisation in the western honeybee Apis mellifera L., while the Primordial Particle System describes a very general example of the formation of emergent structures with distinct properties from identical, individual building blocks.It will be shown how in these cases the phenomena of self-organization and emergence come about and which properties the respective systems have. The mathematical model of the BEECLUST algorithm describes a specific example of self-organization and emergence and is first validated on the basis of experiments with real honey bees. After the validation, the model is used to investigate certain parameters that would not be explorable in a real system. For this purpose, the system is reduced as much as possible to determine the essential system components. The model also serves to test interactions between honey bees and robotic honey bee decoys. The comparison of simulation experiments with equivalent experiments on honey bees and robots is then used again for qualitative verification and validation of the model. The Primordial Particle System describes a general model of self-organisation and emergence. The emergent properties of the structures, which form by rule-based interactions of identical building blocks, show analogies to living beings. Parallels to the abiogenesis can be found, but also the fundamental nature of emergent systems can be investigated.Martin Stefanec BScZusammenfassungen in Deutsch und EnglischKarl-Franzens-UniversitÀt Graz, Masterarbeit, 2019(VLID)346963

    A Minimally Invasive Approach Towards “Ecosystem Hacking” With Honeybees

    No full text
    Honey bees live in colonies of thousands of individuals, that not only need to collaborate with each other but also to interact intensively with their ecosystem. A small group of robots operating in a honey bee colony and interacting with the queen bee, a central colony element, has the potential to change the collective behavior of the entire colony and thus also improve its interaction with the surrounding ecosystem. Such a system can be used to study and understand many elements of bee behavior within hives that have not been adequately researched. We discuss here the applicability of this technology for ecosystem protection: A novel paradigm of a minimally invasive form of conservation through “Ecosystem Hacking”. We discuss the necessary requirements for such technology and show experimental data on the dynamics of the natural queen’s court, initial designs of biomimetic robotic surrogates of court bees, and a multi-agent model of the queen bee court system. Our model is intended to serve as an AI-enhanceable coordination software for future robotic court bee surrogates and as a hardware controller for generating nature-like behavior patterns for such a robotic ensemble. It is the first step towards a team of robots working in a bio-compatible way to study honey bees and to increase their pollination performance, thus achieving a stabilizing effect at the ecosystem level
    corecore